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Abstract—Novel hydroxycinnamic acid–calix[4]arene hybrids 4 and 5 were synthesized. Their radical scavenging and antioxidant
activities were determined by using DPPH� radical and AIBN�–induced linoleic acid peroxidation test, respectively. Preliminary
studies showed that compounds 4 and 5 possess enhanced activity with respect to the corresponding hydroxycinnamic acid and phe-
netidine derivative. Kinetic solvent effects were taken in account to understand the different antioxidative behaviour of the synthe-
sized compounds.
� 2006 Elsevier Ltd. All rights reserved.
Hydroxycinnamic acids (HAs) and their derivatives
have various properties which may be of importance
for the remediation of many diseases. Their activities
of biomedical interest (antibacterial,1a antiviral,1b

antiinflammatory,1c immunostimulatory,1c antiathero-
genic,1d antiproliferative,1e neuroprotective,1e and radio-
sensitizing1f) are related to their capability to act as
antioxidants, metal chelants, and enzyme inhibitors or
to link specific receptors.2 In particular, caffeic (CA)
and sinapic (SA) acids are natural antioxidants widely
spread in the plant kingdom, in various beverages and
foodstuffs, to which they impart an atherosclerosis
preventive function.3

Antioxidant activity is a multifactorial event. As con-
cerns the HA derivatives, the main factors which modu-
late this property are propensity to radicals formation,
electron-donating or -withdrawing substituents on cate-
chol moieties, involvement of other H-donating groups
(–NH, –SH), chemical stability, and lipophilicity.4

The interest toward these compounds prompted us to
synthesize novel derivatives by using a rigid molecular
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platform for the presentation of a HA cluster. This, in
principle, could generate novel molecular architectures
with amplified recognition, radical scavenging and
antioxidant activities in comparison to a single HA
unit.

We decided to use a calix[4]arene scaffold, macrocyclic
molecule with unique tridimensional structures (cone,
partial cone, 1,2- and 1,3-alternate conformation).5

Due to their synthetic versatility, low cost and limited-
toxicity, calixarenes have been widely used in supramo-
lecular chemistry as building blocks or molecular scaf-
folds for the construction of various receptors.6

Recently, a cluster effect in molecular recognition
phenomena has been demonstrated for multivalent
calix[4,8]arene derivatives.7

Here we wish to report free-radical scavenging and
antioxidative activities of calix[4]arene derivatives
exposing four units of hydroxycinnamic acid in all-syn
orientation.

The synthesis8 of caffeoyl- and sinapyl-calix[4]arene
derivatives 4 and 5 is depicted in Scheme 1. Addition
of the tetra-aminocalix[4]arene derivative 19 to a DMF
solution of the corresponding acetylated hydroxycin-
namic acid (2 or 3), in the presence of PyBOP and DI-
PEA, afforded the acetylated intermediate compounds
in 50% isolated yield.
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De-acetylation, in the presence of pyrrolidine, gave pure
hybrid compounds 4 and 5 in quantitative yields. Their
structures were characterized10 by NMR and ESI-MS
spectra.

In order to evaluate the potentially enhanced radical
scavenging and antioxidant activities of the multivalent
compounds (4 and 5), we prepared the p-phenetidine
derivatives 6 and 7,11 as reference compounds. In fact,
they can be assimilated to 1/4 of the corresponding
hybrid structures 4 and 5.
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Table 1. Antioxidant efficiencies kinh/kp,a absolute rate constantb kinh

and stoichiometric factors na for the reaction of ArOH + HLOO� in
acetonitrile at 50 �C

Compound kinh/kp · 103 kinh · 104 (M�1 · s�1) n

4 3.7 18.5 5.9
5 14.5 72.5 2.7
6 2.7 13.6 1.6
7 11.5 57.5 1.1

a Experimental error ±10%. Average of the values of three to five
experiments.

b Calculated with kp = 50 M�1 · s�1 for linoleic acid.
Free radical scavenging activity was determined by the
2,2-diphenyl-1-picrylhydrazyl radical (DPPH�).12

The rate constant values (methanol as solvent,
k1 > 1.5 · 104) and the stoichiometric factors n (number
of DPPH� radicals quenched per antioxidant molecule)
for 4 (n = 7.7) and 5 (n = 2.7) were indicative of their
high radical quenching capability. Interestingly, com-
pounds 6 and 7, the free caffeic acid, and the free sinapic
acid showed lower values of n (1.94, 1.2, 2.2, 1.0, respec-
tively) than the hydroxycinnamic acid–calixarene
conjugates.

The very high rate constant values suggest that reactions
of compounds 4 and 5 with the DPPH� radical, in a
strong hydrogen bond accepting solvent like methanol,
occur by a fast electron transfer (ET) mechanism. Con-
sequently, the hydrogen atom abstraction (HAT) pro-
cess is a marginal reaction, occurring very slowly. This
agrees with the results reported by Foti et al.13 for free
caffeic acid, sinapic acid, and their methyl ester deriva-
tives, and by Ingold and Litwinienko14 for hindered
and non hindered phenols.

The antioxidant activity of compounds 4–7 was deter-
mined by the in vitro model using azo-bis-isobutyryl-
nitrile (AIBN)–induced linoleic acid peroxidation.15

The alkylperoxyl-radicals (HLOO�) generated from AIBN
are similar to the radicals formed in biological systems.
These radicals are responsible for the peroxidation of
human low-density lipoproteins (LDL), which are impli-
cated in diseases such as atherosclerosis and cancer.

Table 1 reports the values of kinh/kp, indicative of anti-
oxidant efficiency, obtained in acetonitrile for com-
pounds 4–7. Compounds 4 and 5 showed absolute rate
constants kinh and stoichiometric factors n to be higher
with respect to the reference compounds 6 and 7, but
a fourfold increase was not observed.16 This could be
due to the particular spatial geometry that the calixarene
scaffold confers to the HA units.

The kinh value of sinapic acid derivative 5 appears to be
particularly high, by fourfold, in comparison with the
corresponding caffeic acid derivative 4. The same ratio
was also observed for phenetidine derivatives 7 and 6.

This behaviour might appear surprising considering that
measured O–H bonds dissociation enthalpy (BDE) for
free sinapic and caffeic acids are very similar (80–
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81 kcal/mol).17 However, this unexpected behaviour can
be understood taking into account the kinetic solvent ef-
fects. Measurements in cyclohexane18 showed that the
kinh of compounds 6 (1.1 · 106) and 7 (6 · 105) differ
slightly (factor of 1.6). Therefore, the lower kinh values
of caffeoyl derivatives 4 and 6, with respect to sinapyl
derivatives 5 and 7, measured in acetonitrile, are ascrib-
able to the stronger interaction of the caffeoyl moiety
with the polar solvent.

In conclusion, the present work describes the first exam-
ples of hydroxycinnamic acid–calixarene hybrids with
effective radical scavenging and antioxidant activities.
These derivatives could be regarded as novel molecu-
lar constructs with defined shape and high density anti-
oxidant surface, potentially useful for biological
applications.
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